

Regulation: R19

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Soil Mechanics(19CE0152)

Course & Branch: B.Tech - AGE Year & Sem: III-B.Tech & I-Sem

UNIT –I

INTRODUCTION TO SOIL MECHANICS AND INDEX PROPERTIES OF SOILS

1	a) Define Flow index, Toughness index and Liquidity index	[L1] [CO1]	[6M]
	b) Explain briefly about Plasticity index and Shrinkage limit	[L1] [CO1]	[6M]
2	a) Explain the phenomenon of formation and transportation of soils.	[L2] [CO1]	[6M]
	b) Explain with sketches of various types of soil structures.	[L2] [CO1]	[6M]
3	a) Explain the formation of soil by weathering in detail.	[L2] [CO1]	[6M]
	b) Discuss the characteristics and construction of kaolinite and Illite minerals groups.	[L2] [CO1]	[6M]
4	a) Using three phase diagrams of soil, derive an expression for water content in terms of Void ratio, Specific gravity and degree of saturation.	[L2] [CO1]	[6M]
	 b) A saturated soil sample has a water content of 25% and unit weight of 20 kN/m³. Determine the Specific gravity of the solid particles, dry unit weight and void ratio. 	[L3] [CO1]	[6M]
5	Using three phase diagrams of soil, derive an expression for saturated unit weight of soil in terms of void ratio, unit weight of water, specific gravity and degree of saturation.	[L2] [CO1]	[12M]
6	A sample of clay soil of volume 1×10^{-3} m ³ and weight 17.62 N, after being dried out in an oven had a weight of 13.68 N. If the specific gravity of the particle was 2.69 find void ratio, saturated unit weight, dry unit weight and water content.	[L3] [CO1]	[12M]
7	a) A soil has a liquid limit of 25% and flow index of 12%. If the plastic limit is 15% determine the plasticity index and toughness index. If the water content of the soil is in natural condition in the	[L3] [CO1]	[6M]

	field is 20%, find the liquidity index and relative consistency.		
	b) What was the relative density. Write the importance of this term?	[L1] [CO1]	[6M]
8	a) Explain Relative density.	[L2] [CO1]	[6M]
	b) How to determine field density by using sand replacement method	[L2] [CO1]	[6M]
9	a) Briefly explain the Procedure of core cutter method.	[L2] [CO1]	[6M]
	b) Explain Determination of specific gravity in the laboratory.	[L2] [CO1]	[6M]
10	a) Describe in detail about wet and dry sieve analysis of soils.	[L2] [CO1]	[6M]
	b) What are the consistency limits?	[L1] [CO1]	[6M]

UNIT –II PERMEABILITY OF SOILS AND EFFECTIVE STRESS PRINCIPLES

1	a what is meant by Darcy's law? Explain briefly flownet	[L1] [CO2]	[6M]
	b Explain briefly total stress, effective stress and pore water pressure	[L1] [CO2]	[6M]
2	a) Explain the phenomenon of capillary rise in soil and write an	[L2] [CO2]	[6M]
	expression for the Capillary rise.		
	b) What is Darcy's law? What are its limitations?	[L1] [CO2]	[6M]
3	a) A constant head permeability test was run on a sand sample 30cm	[L3] [CO2]	[6M]
	in length and 20 cm^2 in area. When a loss of head was 60 cm, the		
	quantity of water to be collected in 2 minutes was 250ml.		
	Determine the coefficient of permeability of soil.		
	b) How would you determine the evenese normachility of a soil		[AM]
	deposit consisting of number of lowers? What is its use in soil	[L2] [CO2]	
	angineering?		
4	What are the different methods for determination of coefficient of		[12M]
-	permeability in a laboratory. Explain any one method?	[L2] [C02]	[1211]
5	Explain the constant head permeability test with the help of neat sketch?	[I 2] [CO2]	[12M]
6	Δ falling head permeability test was performed on a sample of clean	[L2] [CO2]	[12N]
Ŭ	uniform sand. One minute was required for the initial head of 100cm		[]
	to fall to 50cm in the stand pipe of cross-sectional area 1 $50cm^2$ If the		
	sample was 4cm in diameter and 30cm long calculate the coefficient		
	of permeability of sand.		
7	a) Explain factors affecting the permeability of soils?	[L2] [CO2]	[6M]
		[][00]]	
	b) Estimate the quantity of flow of water through a soil mass in a 300		
	sec period when a constant head of 1m is maintained. The length		
	of the sample is 150 mm and the cross-Sectional area is 100×100	[L3] [CO2]	[6 M]
	mm. The coefficient of permeability of the soil sample		
	$is1 \times 10^{-1} mm/s.$		
8	What is flow net? Explain the characteristics and uses of flow net?	[L2] [CO2]	[12M]
9	Explain in details about Quick sand condition.	[L2] [CO2]	[12M]
10	a) Prove that the effective stress (σ') for a standard soil can be	[L2] [CO2]	[6M]
10	expressed as $\sigma' = \sigma - u$ Where $\sigma =$ total stress, $u =$ pore water		
	pressure		
	b) An 8m thick layer of stiff saturated clay ($r = 19 \text{ kg/m}^3$) is		
	underlain by a layer of sand. The sand is under an artesian		
	pressure of 5m. Calculate the maximum depth of cut that can	[L3] [CO2]	[6M]
	bemade without causing a heave.		

UNIT –III

STRESS DISTRUBUTION IN SOILS AND COMPACTION OF SOILS

1	a What are the factors affecting the compaction ? Explain briefly						fly	[L1] [CO4]	[6M]		
	b Discuss about Optimum Moisture Content and Maximum Dry Density					[L1] [CO4]	[6M]				
2	Derive an expression for vertical stress at a point due to a point load,						load,	[L2] [CO3]	[12M]		
	us	ing Boussinesc	q's theo	ry.							
3	Ex str	xplain Westerg	aard's t	heory f	for the c	letermi	nation	of the vertic	cal	[L2] [CO3]	[12M]
4	A	concentrated le	oad of 2	2000kN	is app	lied at 1	the grou	Ind surface	•	[L3] [CO3]	[12M]
	De	etermine the ve	ertical s	tress at	a point	p whic	ch is 6m	directly be	elow the		
	loa	ad. Also calcul	ated the	e vertic	al stres	s at a p	oint wh	ich is at a d	lepth of		
	6n	n but at a horiz	ontal a	depth o	of 5m fi	rom the	e axis of	the load.	-		
5	A	rectangular for	undatio	n 4m b	y 5m ca	arries a	u.d.l of	200		[L3] [CO3]	[12M]
	kN	N/m ² . Determin	e the v	ertical s	stress a	t a poin	t p loca	ted and at a	a depth		
	of 2.5 m.										
6	a) Explain the concept of 'Pressure Bulb' in soils.								[L2] [CO3]	[6M]	
	b) What do you	unders	stand b	v 'Press	sure bu	lb'? Illu	strate with	sketches		
		plane metho	d.							[L1] [CO3]	[6M]
7	Ex	xplain the stand	lard pro	octor tes	st with	help of	neat sk	etch.		[L2] [CO4]	[12M]
8	De	escribe in detai	l about	modifi	ed proc	tor test	with ne	eat sketch.		[L2] [CO4]	[12M]
9 10		hat are the fact	ors are	btoing c	ompac	tion sol	lis expla	<u>Specific c</u>	morrity	[L2] [CO4]	
10	The following data are obtained in a compaction test. Specific gravity=							,ravity=			
	2.65										
	М	oisture									
	co	ontent (%)	2	4	5.8	6.7	7.8	10			
	W	/et			0.0			10		[L3] [CO4]	[12M]
	de (K	ensity XN/m ³)	20.4	20.9	21.4	22.2	22.4	22.0			
	Determine the OMC and maximum dry density. Draw 'Zero-air-void line.										

UNIT- IV CONSOLIDATION OF SOILS

1	a Explin briefly Coefficient of compressibility and Coefficient of	[L1] [CO5]	[6M]
	volume change .		
	c Define Compression index Expansion index.	[L1] [CO5]	[6M]
2	Describe in detail about initial consolidation, primary consolidation,	[L2] [CO5]	[12M]
	secondary consolidation.		
	Describe the consolidometer test. Show how the results of this test	[L2] [CO5]	[12M]
3	are used to predict the rate of settlement and the magnitude of		
	settlement.		
4	Discuss the Terzaghi's theory of consolidation, state the various	[L2] [CO5]	[12M]
	assumptions and their validity	[][]	
5	Discuss the spring analogy for primary consolidation. What are its	[L2] [C05]	[12M]
	uses		
6	Obtain the differential equation defining the one dimensional	[] 2] [CO5]	[12M]
Ŭ	consolidation as given by Terraghi listing the various assumptions		
7	consolidation as given by reizagin insting the various assumptions	[1,2] [005]	[1 3] /[]
/	A clay stratum, 5m thick has an initial void ratio of 1.50 and the	[L3] [C05]	
	effective overburden pressure of 120 kN/m ² when the sample is		
	subjected to an increases pressure of 120kN/m ² the void ratio reduces		
	to1.90. Determine the volume of compressibility and final		
	settlement of stratum.		
8	Calculate the final settlement of the clay layer with an increase of	[L3] [CO5]	[12M]
	pressure of 30 kN/m ² at mid height of layer take $\gamma = 10$ kN/m ³ .		
9	A clay stratum, 7m thick has an initial void ratio of 2.05 and the	[L3] [CO5]	[12M]
	effective overburden pressure of 140 kN/m ² when the sample is		
	subjected to an increases pressure of 140 kN/m ² the void ratio		
	reduces to 1.44. Determine the volume of compressibility and final		
	settlement of stratum.		
10	The laboratory consolidation data for undisturbed clay sample are as	[L3] [CO5]	[12M]
	follows] [•]	-
	$\sigma_{1-1,00} = \sigma_1 = 85 k N/m^2 \rho_{2-0,80} \sigma_2 = 465 k N/m^2$ determine the		
	void ratio for a pressure of $\sigma_2 = 600 K N/m^2$		
	void fails for a pressure of 03 – 000 m/m		

UNIT –V

SHEAR STRENGTH OF SOILS

1	a Explain briefly about liquification of soil?	[L1] [CO6]	[6M]
	b Explain the merits and demerits of triaxial test.	[L1] [CO6]	[6M]
2	Describe the direct shear test. What are merits and demerits?	[L2] [CO6]	[12M]
3	Explain the triaxial shear test? What are the advantages of triaxial shear	[L2] [CO6]	[12M]
	test over the direct Shear test?		
4	What is unconfined compression test? Sketch the apparatus used what	[L2] [CO6]	[12M]
	are its advantages over triaxial test?		
5	Write short notes on	[L1] [CO6]	[12M]
	a) Mohr's circle b) Explain the Mohr's coulomb strength envelope.		
6	Describe the vane shear test with a neat sketch.	[L2] [CO6]	[12M]
7	The stresses at failure on the failure plane in a cohesion less soil mass	[L3] [CO6]	[12M]
	was Shear stress = 5 kN/m^2 ; Normal stress = 18 kN/m^2 . Determine the		
	resultant stress on the failure plane, the angle of internal friction of the		
	soil and the angle of inclination of the failure plane to the major		
	principal plane.		
8	A ware 10.9 cm long 7.2 cm in diameter was pressed into a soft slav		[13M]
0	A valle, 10.8 cm long, 7.2 cm in diameter, was pressed into a soft clay		
	failure was 45 N m. Find the shear strength of the clay on a horizontal		
	nlane		
9	A triavial compression test on a cohesive sample cylindrical in shape		[12M]
	vields the following effective Stresses:		
	Major Principal stress 8 mN/m ²		
	Minor principal stress 2 mN/m^2		
	Angle of inclination of rupture plane is 60° to the horizontal Present		
	the above data, by means of a Mohr's circle of stress diagram. Find the		
	cohesion and angle of internal friction.		
10	The stresses at failure on the failure plane in a cohesion less soil mass	[L3] [CO6	[12M]
	was Shear stress = 4 kN/m^2 ; Normal stress = 10 kN/m^2 . Determine the		
	resultant stress on the failure plane, the angle of internal friction of the		
	soil and the angle of inclination of the failure plane to the major		
	principal plane		

Prepared by:

Dr.P. RAMESH